

المستوى الثانى كيمياء

Tanta University
Faculty of Science
Department of Chemistry

Exam for Level Two, chemistry section

CH 2204

Chemistry of Transition Elements

June 2017

Total Assessment Marks: 100

Termi Second
Time Allowed: 2 h

Answer the following questions:-

1) Comment on each of the following:

(25 marks)

- a-) The melting point and boiling points of the transition elements are high.
- b) Compounds of transition elements are usually paramagnetic.
- c) Many transition elements and their compounds have catalytic properties.
- d) The high density of transition elements.
- 2) Discus the followings:

(25 marks)

- a) Extraction of titanium.
- b) Compare and contrast the chemistry of Fe, Ru and Os.
- c) The chemical properties of Sc group.
- 3) Write on:

(25 marks)

- a) The assumptions of the crystal field theory,
- b) Draw energy level diagram and indicate the type of hybridization of:

d⁴, d⁵, d⁶, d⁷ and d⁸ square planar, octahedral and tetrahedral.

4) Explain:

(25 marks)

- a) The electronic configuration and The variable valency of d-block elements.
- b) The general properties of the transition elements comparing with the main elements.

(Good luck)

Examiners: Prof. Dr. Gad El-Hefnawy

TANTA UNIVERSITY FACULTY OF SCIENCE DEPATTMMENT OF CHEMISTRY

Final Examination For Second Level Students (Special Chemistry)

COURSE TITLE: The Phase Rule | COURSE CODE: CH2208

DATE: 24/5/2017 TOTAL ASSESSMENT TIME ALLOWED: 2

MARKS: 100 HOURS

Answer the following questions (label each area line and point in your diagram):

1- a) What is the phase rule? For what systems it is applied? What is the phase equilibrium diagram? (15 marks)

b) Evaluate P, C and F for the following systems: (15 marks)

i) A mixture of four gases enclosed in a cylinder.

ii) Ice/water/vapor.

iii) Hydrogen, oxygen and water enclosed in a vessel at room temperature.

iv) $2H_2O \leftrightarrow 2H_2 + O_2$ at $1800^{\circ}C$ starting from water.

v) S_{Rumbic} , $S_{Monoclinic}$, S_{Liquid} and S_{Vapor} .

2- Draw the vapor pressure composition phase diagram at constant temperature and the temperature composition phase diagram at constant pressure for two liquids which forms zeotropic mixture, azeotropic mixture, partially miscible liquids and immiscible liquids.

(20marks)

3- Discuss the following phase diagram of aqueous salt solution, apply the phase rule at each area and point in your phase diagram. Show the product of isothermal dehydration of solution P. (20marks)

4-Define the following phase diagrams of a binary condensed system, apply the phase rule at each region, line and point in your phase diagrams.

(30marks)

(Good luck)

TANTA UNIVERSITY **FACULTY OF SCIENCE** CHEMISTRYDEPARTEMENT

Course title: Organic Chemistry (4) Course code: CH 2216 27/5/2017

Total Marks: 150 Time allowed: 2 hrs.

Answer the following questions:

1- Answer by mechanism the following:

- a- Addition of water to C=O group. Discuss the mechanism and factors affecting such reaction.
- b- Effect of acid on 1,2-diols.
- c- Explain in details the Benzyne mechanism.
- d- Hoffmann hypobromide reaction. Show the mechanism.

2- Explain by mechanism the following reactions:

- a- Transformation of cumene to phenol and acetone. Show mechanism.
- b- Diazo coupling mechanism. Explain in details.
- c- Explain by mechanism how cyanide ion can be used as ambident nucleophiles.
- d- Addition of HCl to 3,3-dimethyl-1-butene. Show mechanism.

3- Answer the following reaction:

- a- Reaction of Bromine with benzene ring. Show the mechanism.
- b- Discuss in details the factors affecting of aliphatic nucleophilic substitution reaction.
- c- Explain the both Saytzeu and Hoffmann rules in elimination.
- d- 1,2-chlorohydrin can act as neighbouring group participation. Explain the mechanism.

4- Answer the following reactions:

- a- Correlate between the mechanism of both SN1 and SN2 mechanism.
- b- Addition of Br₂to alkenes is Trans addition. Explain the mechanism.
- c- Explain the mechanism of Elimination reaction.
- d- Show the mechanism of SNi and SNi.

Kind regards	Prof. Dr. Mahmoud Fahmy

5		Tanta University Faculty of Science				
3	Chemistry Department					
TI C	Examina	ation for Second Level Students (Cr	redit Hours System)			
111	Course Title	Stereochemistry	Course Code: CH2246			
Date:	31/5/2017	Total Assessment Marks: 50	Time Allowed: 2 hrs			

1. Draw the following isomers:

(6 marks)

- i. (R)-2-Aminopropanoic acid
- ii. (S)-2-Chloro-1-butanol
- iii. (2R, 3S)-Aldotetrose

2. Discuss the following:

(12 mark)

- i. Conformations of n-butane
- ii. Synthesis of (\pm) -3-methyl-2-pentanol
- iii. Separation of (±)-2-aminopentane
- 3. The chemical shift for ethylenic proton (δ H) was found experimentally to be 5.6 ppm for 2-chloro-2-pentene, (Et _{gem}=0.44, Me _{trans}= -0.29, Me _{cis}= -0.26, Cl _{cis}=0.19, Cl _{trans}=0.03). Determine the geometrical isomerism of the above alkene? (4 marks)

4. Define each of the following:

(12 mark)

- i. Specific rotation
- ii. Pairs of enantiomers
- iii. Racemic mixture

5. Give reason (writ equations if possible):

(4 marks)

- i. Maleic acid readily forms a cyclic anhydride, while fumaric acid does not
- ii. Meso-tartaric acid is optically inactive compound

6. Compare between each of the following:

(12 mark)

- i. Stereoselective hydroxylation of cis- and trans-3-methyl-2-phenyl-2-pentene
- ii. Racemization of (-)-mandelic acid and (+)-α-chloroethylbenzene
- iii. Conformations of 1,2- and 1,3-disubstituted cyclohexane

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, With	Best	Wishes,,,,,,,,,,
--	--------	------	------------------

Prof. Dr. Adel selim

Dr. Mohamed Azaam

Dr. Atif El-Gharably

		Tanta University				
	Faculty of Science					
0000	Chemistry Department					
THE MI	Examination for Second Level Students (Credit Hours System)					
M			Course Code: CH2246			
Date:	31/5/2017	Total Assessment Marks: 50	Time Allowed: 2 hrs			

1. Draw the following isomers:

(6 marks)

- i. (R)-2-Aminopropanoic acid
- ii. (S)-2-Chloro-1-butanol
- iii. (2R, 3S)-Aldotetrose
- 2. Discuss the following:

(12 mark)

- i. Conformations of n-butane
- ii. Synthesis of (±)-3-methyl-2-pentanol
- iii. Separation of (±)-2-aminopentane
- 3. The chemical shift for ethylenic proton (δ H) was found experimentally to be 5.6 ppm for 2-chloro-2-pentene, (Et _{gem}=0.44, Me _{trans}= -0.29, Me _{cis}= -0.26, Cl _{cis}=0.19, Cl _{trans}=0.03). Determine the geometrical isomerism of the above alkene? (4 marks)
- 4. Define each of the following:

(12 mark)

- i. Specific rotation
- ii. Pairs of enantiomers
- iii. Racemic mixture
- 5. Give reason (writ equations if possible):

(4 marks)

- i. Maleic acid readily forms a cyclic anhydride, while fumaric acid does not
- ii. Meso-tartaric acid is optically inactive compound
- 6. Compare between each of the following:

(12 mark)

- i. Stereoselective hydroxylation of cis- and trans-3-methyl-2-phenyl-2-pentene
- ii. Racemization of (-)-mandelic acid and (+)-α-chloroethylbenzene
- iii. Conformations of 1,2- and 1,3-disubstituted cyclohexane

Prof. Dr. Adel selim

Dr. Mohamed Azaam

Dr. Atif El-Gharably

TANTA UNIVE	RSITY FACU	LTY OF SCIENCE	DEPA	RTMENT OF CHEMISTRY
EXAMIN	ATION FOR SO	PHOMORES (S	ECOND LEVEL	.) STUDENTS OF
		CIAL CHEMISTR	RY SECTION	1
COURSE TITLE:	STEREOCHI			COURSE CODE:CH 2212
DATE: 31 MAY, 2017	TERM: SECOND	TOTAL ASSESSME	NT MARKS: 100	TIME ALLOWED: 2 HOURS
Answer The Followi 1) Describe the separ a- (±)-3-Aminohexar b- (±)-Phenylglycine	ration of each one using (R)-(-)-	f the following mandelic acid.		(18 Marks)
2)a- Describe the synt b-Using Camphor as				(18 Marks) S)-2-ethyl-1-hexanol.
 3) Mark (√) or (X) at a a Mutarotation is the b-Trans-stillbene has with UV-spectra. c- The asymmetric C d-Fumaric acid reading not give an anhydra 	e conversion of as slightly lower -atom is that ato ily give a cyclic	glucose to galactic λ _{max} and very com which attace anhydride with	ctose. higher ε than d with four sim	ilar groups. ()
4) Describe each of the a-Stereoselective add b-Diastereomers and c-Stability of cyclic has been seen as a	lition to cis- and racemic mixtu	d trans-2,3-diph are .	enyl-2-hexene	(15 Marks)
Write its chemical:	t of ethylenic process. What name.(substitue	oton δ_H was fou at is the geometr at constants for	nd experiments	(9 Marks)
6)a-Draw and name the i-3,4-Dichlorohexar b- Draw the following i- (2R,3S)-Aldotetro	ne. ii-3-Bronng compounds:	no-2-pentanol.	iii-1,4-Di	omment):(11Marks) methylcyclohexane. (9 Marks) ,5-Dibromohextane.
Examinars:				

Prof.Dr. Adel Selim

Dr. Mohamed Azam

Dr. Atef El-Garably

TANTA UNIVERSITY FACULTY OF SCIENCE DEPA	RTMENT OF CHEMISTRY
EXAMINATION FOR SOPHOMORES (SECOND LEVEL	STUDENTS OF
SPECIAL CHEMISTRY SECTION	
COURSE TITLE: STEREOCHEMISTRY	COURSE CODE:CH 2212
DATE: 31 MAY, 2017 TERM: SECOND TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 2 HOURS
Answer The Following Questions: 1) Describe the separation of each of the following: a- (±)-3-Aminohexane using (R)-(-)- mandelic acid. b- (±)-Phenylglycine using chiral stationary phase (C.S.P.).	(18 Marks)
2)a- Describe the synthesis of (±)-3-ethyl-2-hexanol. b-Using Camphor asymmetric reagent describe the synthesis of (25)	(18 Marks) S)-2-ethyl-1-hexanol.
 3) Mark (√) or (X) and correct the false statments: a- Mutarotation is the conversion of glucose to galactose. b-Trans- stillbene has slightly lower λ_{max} and very higher ε than with UV- spectra. c- The asymmetric C-atom is that atom which attaced with four sim d- Fumaric acid readily give a cyclic anhydride with heating while not give an anhydride under the same conditions. 	() nilar groups. ()
 4) Describe each of the following: a- Stereoselective addition to cis- and trans-2,3-diphenyl-2-hexene b- Diastereomers and racemic mixture. c- Stability of cyclic hydrocarbons. 	(15 Marks)
 5)a-Using Mayer's asymmetric reagent describe the syntheses of (3R acid. b-The chemical shift of ethylenic proton δ_H was found experiment for Ph-CH=C(Me)-COOMe. What is the geometrical isomerism Write its chemical name.(substituent constants for chemical shifts -COOMe_{cis}=1.25,-COOMe_{trans}= 0.67,-Me_{cis}= -0.26,-Me_{trans}= -0.26 	(9 Marks) ally to be 7.55 ppm of the above ester? s are: -Ph _{gem} = 1.35,
b- Draw the following compounds:	imethylcyclohexane. (9 Marks) ,5-Dibromohextane.
Examinars:	A Commission of the Commission

Dr. Mohamed Azam

Prof.Dr. Adel Selim

Dr. Atef El-Garably

DIWICE

0.	25 SE		9 0	76
Tanta	University	Final Exan	nination of Chemical Kinetics	
Facult	y of Science	Level Two	Course code: CH 2202	The state of the s
Chemi	stry Department	June 2017	Total Assessment Marks: 100	كنبسة العلبوم
Special	Chemistry Students	*	Time allowed: 2 h	Date: 3/6/201
			ن ثلاثة صفحات	لحوظة الامتحان فر
Ques	tion (I): Choose t	he correct ansi	wer for the following?	
			ed into 6.0 M HCl. After 25 s, 3. t which magnesium was consum	
(i). 0.1	14 g/s (ii) . 0.1	8 g/s (iii).	0.32 g/s (iv) 4.50 g/s	
2-Cor	isider the following	reaction; N _{2 (g)}	$+3 H_{2 (g)} \longrightarrow 2NH_{3 (g)}$	
			nol/s, then the rate of consumption (iii) 9.0 ×10 ⁻⁴ mol/s. (iv) 1.4	
3-Cor	nsider the following	reaction; NaOH	$I_{(aq)} + HCI_{(aq)} \longrightarrow NaCI$	$_{(aq)}$ + $_{2}O_{(l)}$
The ra			d by monitoring the change in con Na ⁺ (iv) H ₂ O	centration of:
reacti		n open container	be used to measure the rate of the contraction of CI (iv) color of the solution in the color of the solution of CI (iv) color of the solution of CI (iv) color of the solution in the color of the solution of CI (iv) color of the solution in the color of t	(aq) + H ₂ (g)
5-Cor	nsider the following	reaction: 2 S (a)	$+$ 3 $O_{2 (g)}$ \longrightarrow 2 $SO_{3 (g)}$ + h	eat
	,	(3)		Nation Parameter
(i) Dec	te of this reaction coul reasing the temperatu creasing the concentra	re. (ii)Adding a c	atalyst (iii) Increasing the concen	tration of S _(s)
	rable collision geomet	ry. II. Sufficient	ective collisions to occur? kinetic energy. III. Large ΔΗ. III only (iv) I, II and III	riodes (1995) - 199 April - Mint al 1994 William (1997) - 180
	ch of the following fac ture of reactants	1	te of heterogeneous reactions only? nperature of system	

8-Collision theory states that:

(iii) surface area of reactants

(i) all collisions lead to chemical reactions. (ii) Most collisions lead to chemical reactions.

(iv) concentration of reactants

(iii) Very few reactions involve particle collisions. (iv) Effective collisions lead to chemical reactions.

9-Consider the following collisions, each occurring at the same temperature: Which one of the following factors explains why collision one is successful while collision two is not successful?

co	DLLISION OF	VE.	CO	LLISION TV	VO.
BEFORE COLLISION	COLLISION	AFTER COLLISION	BEFORE COLLISION	COLLISION	AFTER
FF + R	+ (F) NO (A)	↑ (L) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	(F) → ↑ (S) ×	→ (***) ↑ (***) ↑	F F

- (i) Catalyst.
- (ii) Geometry
- (iii) Concentration
- (iv) Kinetic energy.

10-An activated complex has

- (i) low potential energy and is stable
- (ii) high potential energy and is stable.
- (iii) Low potential energy and is unstable (iv). High potential energy and is unstable.

11- Activation energy can be described as the

- (i) energy of motion. (ii) Energy difference between the reactants and the products.
- (iii) Energy of the activated complex. (iv) Energy difference between the reactants and the activated complex

12-A substance that increases the rate of a chemical reaction and may be recovered unchanged at the end of the reaction is an

- (i) product.
- (ii) Catalyst.
- (iii) Activated complex. (iv)Reaction intermediate

13-Consider the following reaction mechanism:

$$V^{3+} + Cu^{2+} \xrightarrow{} V^{4+} + Cu^{+}$$
 slow $Cu^{+} + Fe^{3+} \xrightarrow{} Cu^{2+} + Fe^{2+}$ fast The reaction intermediate is; (i) Cu^{+} (ii) Cu^{2+} (iii) V^{3+} (iv) Fe^{3+}

14-The initial rate data for the reaction $2N_2O_{5(g)}$ -----> $4NO_{2(g)} + O_{2(g)}$ is shown in the following table. The value of the rate constant and half-life time for this reaction.

Run	$[N_2O_5]M$	Rate (M/s)		To be a few to the second				
1	1.28×10^{2}	22.5	-3 - 2 - x	ran in terretain in pagin. Pagin in Production was a	enter de la companya		- 30V, 43		
2	2.56×10^{2}	45.0		***					
(i)4.09 s	(ii) 0.2	225 s^{-1}	(iii)	0.176 s^{-1}	(iv) 80.1 s	; - 1	(v) 0.0)569	s^{-1}

15-If the reaction $2HI \rightarrow H_2 + I_2$ is second order, which of the following will yield a linear plot?

(i) log [HI] vs time (ii) 1/[HI] vs time (iii) [HI]² vs time (iv) [HI] vs time (v) ln[HI] vs time

Question (II)

1-The rate constant for a reaction at 30 $^{\circ}$ C is found to be exactly twice the value at 20 $^{\circ}$ C. Calculate the activation energy?

2-The following data were obtained for the decomposition of N_2O_5 in CCl₄. The following data were collected

Time (s)	0	423	753	1116	1552	1986	2343
[N2O5] mol/L	1.46	1.09	0.89	0.72	0.54	0.43	0.35

Determine the following: (i)- the order with respect to N₂O₅

(ii)- The rate law for this reaction (iii)- The [N₂O₅] at 3500 s after the start of reaction

3-Discuss three techniques for follow-up the rate of chemical reaction?

Question (III):

1-Discuss the factors affecting the rate of chemical reactions?

2-Write short notes about characteristics, classification of chemical catalysts, and discuss the mechanism of chemical catalysis according to Arrhenius concept?

3-Enumerate the methods for determination of the order of chemical reactions and discuss one of them?

4- For the reaction proceeded in a sequence of reversible steps;

$$A + B \xleftarrow{k_1} C + D$$

$$\begin{array}{ccc} & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Prove that the equilibrium constant for this reaction equal the product of all rate constants ratio?

Good Luck for all

Prof. Ali Gemeay

Prof. Hosny El-Daly

	¥	TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY					
	EXAMINAT	ION FOR JENIOR (SECOND YEAR) STUDENTS OF	PHYSICAL BIOCHEMISTRY				
1969	COURSE TITLE:	CHEMISTRY OF CARBOHYDRATES AND LIPIDS	COURSE CODE: BC2202				
DATE:	19-6-2017	TERM: SECOND TOTAL ASSESSMENT MARKS:	50 TIME ALLOWED: 1 HOUR				

Answer all the questions

1) Correct the under lined word of each of the following: (7 marks)

- A. <u>3 carbons</u> are removed from fatty acyl coA in one turn of β -oxidation.
- B. Beta oxidation of fatty acid takes place in cytosol.
- C. A fatty acid with <u>14 carbon</u> atoms will undergo 6 cycles of beta oxidation
- D. Stereoisomers that differ only in configuration about one chiral carbon is called **enantiomers**.
- E. Liquid oil can be changed into solid fats by <u>halogenations</u> of unsaturated fatty acids.
- F. Any compound containing a carbohydrate group linked to a lipid moiety is called **proteolipids**.
- G. <u>Glycerophospholipids</u> are compounds contain sphingosine as an alchol.

2) Compare between each of the following

(12 marks)

- A. Alpha and beta isomers
- B. Glycolysis and gluconeogenesis
- C. Wax and neutral fat
- D. Amylose and Amylopectin

3) Give an account of the following

(16 marks)

- A. carnitine shuttle
- B. classification of fatty acid
- C. polyunsaturated fatty acids
- D. Transport of glucose into cells

4) Draw the structure of the following

(15 marks)

- A. Active form of fatty acid
- B. maltose
- C. Cholesterol
- D. Fructose
- E. Phosphatidyl ethanol amine

(C)	TANTA UNIVE	ERSITY FA	ACULTY OF SCIENCE	DEPARTMENT OF CHEWISTRY
0 * * * *	EX	AMINATION FOR FE	RESHMEN (LEVEL 2) STUD	ENTS OF BIOPHYSICS
	COURSE TITLE:		NCIPLES OF BIOCHEMIST ins, Enzymes, Nucleotides and	COURSE CODE: BC 2202
DATE:	JUNE, 19, 2017	TERM: SECOND	TOTAL ASSESSMENT M	TIME ALLOWED: I HOUR

Answer the following Questions:-

Q1:-

(14 Marks)

a- Explain the salvage biosynthesis of AMP, GMP, UMP and CMP.

b- Write <u>Gabriel</u> method for the synthesis of *Phenylalanine* and *Valine*.

Q2:-

(16 Marks)

a- "Amino acids are the building blocks of polypeptides and proteins", write the possible structures of the *dipeptides* formed from the following amino acids.

i- *Phenylalanine* and *Cysteine*.

ii- Leucine and Serine.

b- Give examples to explain the biochemical functions of the coenzymes of vitamins *Thyamin*, *Riboflavine* and *pyridoxine*.

Q3:-

(20 Marks)

a- Give structures of the deoxyribonucleotides which are the building blocks of *DNA*. Explain how these nucleotides are attached together in *each DNA* strand.

b- Give examples on reactions catalyzed by the following enzymes:

i- Oxidase.

ii- Kinase.

iii- Dehydratase.

iv- Phosphatase

Good Luck

Dr Yehia Hafez

Second Term June 2017 Tanat university 2017 Time All . 2 hrs Faculty of Science **Chemistry Department** Course No.: CH 2218 Final Examination for the 2nd year students For Material Sciences Answer the following Questions: Total Assessment Marks:150 1-) A- Choose the correct Answer: (In Chemical equations). Each item 7 marks (1) Markovnikov's addition of HBr is not applicable to (a) Propene (b) 1-butene (c) 1-pentene (d) 2-butene (2) In the reaction of CH₃CH₂CH=CH₂ with HCI, the H of the HCI will become attached to which carbon? (a) C-1 (b) C-2(c) C-3(d) C-4(3) 2-Butene reacts with HBr to give (a) 1-Bromobutane (b) 2,3-Dibromobutane (c) 2-Bromobutane (d) 2,2 Dibromobutane (4) Which of the following alkenes will give a mixture of acetone and acetaldehyde on ozonolysis? (a) 1-butene (b) 2-methyl-2-butene (d) 2-methylpropene (c) 2-butene (5) Addition of two moles of HCI to propyne gives: (b) 1,3-Dichloropropanc (a) 2,2-Dichloropropane (c) 1,2-Dichloropropane (d) None of these (6) Oxidation of a secondary alcohol with K₂Cr₂O₇ /H+ produces (a) a carboxylic acid (b) a Ketone (c) an aldehyde (d) an ester (7) Ketones are prepared by the oxidation of (a) Primary alcohol (b) Secondary alcohol (c) Tertiary alcohol (d) None of these (8) The reduction of a ketone (b) always gives secondary alcohol (a) always gives a primary alcohol (d) always gives a ketal (c) always gives a carboxylic acid (9) Reduction of benzaldehyde in the presence of ammonia gives (a) Toluene (b) Nitro benzene (d) Aniline (c) benzyl amine (10) reaction of benzene diazonium chloride with methanol gives (b) iodobenzene (a) phenol (c) chlorobenzene (d) Anisole (11) nitration of Acetanilide followed by hyderolysis gives (a) phenol (b) iodobenzene (d) None of these (c) nitrobenzene

2-) A- Complete	the following reacti	on (In Chemical ed	juations) :	Each item 7 marks
a- reaction of	aniline with methyli	odide give		8 5 • 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b- reaction of	phenyl hydrazine w	ith benzaldehyde giv	es	
c- reaction of	acetic acid with met	hanol in presence of	strong acid giv	es
B- Why no al	dol condensation ta	kes place in case of	trimethyl acet	aldehyde (Explain)
	< mc			5 marks
3-A) strating wit	h benzene . How ca	n vou obtain the fol	lowing compo	and?
				Each item 6 marks
a- Glyoxal	b- Acetophenon	e c- benzoic acid	8	
-B) Explain the	Action of nitrous a	cid and HCL on an	iline (name th	e product) 5 marks
2	· 1			3 ()
4-) strating with	benzaldehyde. Hov	v can you obtain th	e following con	npound?
4				Each item 6 marks
Cinnamic acid	b- benzyl alcohol	c- benzoic acid	d- Toluene	
				Dr. Mohamed Hamed
	*			
		# 4 p		
				ra Påora a
				a v speriod
		el de la companya de		
				S 399 =

Section of the state of the section of the section

TANTA UNIVERSITY FACULTY OF SCIENCECHEMISTRY DEPARTMENT

FINAL EXAM FOR SENIOR STUDENTS (CHEMISTRY SECTION) COURSE TIME NUCLEAR CHEMISTRY (CH2210) TITLE: ALLOWED: TOTAL ASSESSMENT MARKS: 50 TERM: SECOND DATE: 5-6- 2017 2 HOURS

Answer the following questions:

TRIISWEI UI	ic following question)113.	
1- A) Chos	se the correct answe	er and explain your answer for th	e following
points:		(8 M	arks)
l) Th	e nuclide formed by	y the beta decay of ⁴⁰ ₁₉ K has an	atomic number
	of		
	a. 18	b. 20	
	c. 39	d. 21	
II) Th	ne nuclide formed b	y the alpha decay of ²³⁸ ₉₂ U has a ı	mass number of
-	•		
	a. 234	b. 236	
	c. 238	d. 90	
III) T	he relation between	two nuclides ⁴⁰ ₂₀ Ca and ⁴⁰ ₁₆ S is_	•
	a. Isotopes	b. Isotones	
	c. Isobars	d. Isomers	15
IV) II	the proton number	er or neutron number is	the nuclide
h	nave a special stabil	lity.	
	a. 3	b. 8	
	c. 14	d. 25	
B) Discu	s the following poin	nts:	(6 Marks)
a. I	Plasma b. sr	moke detector	
c. us	es of nuclear fission	n reactor	
2- A) Calc	ulate the bending e	energy (by million electron volt)	of ²⁰⁸ 82Pb. The
		76644 a.m.u. (Proton mass = 1.00	
	eutron mass = 1.00		(4 Marks)

باقي الاسئلة في الخلف

- B) Compere between the two following (Three only): (9 Marks)
 - a. Subcritical mass and supercritical mass
 - b. Hydrogen bomb and atomic bomb
 - c. ²³⁸Uranium and ²³⁵Uranium
 - d. Stable and unstable nucleus
- 3- A- Mention the bombarding particle, target nucleus, product and eject particle for the following nuclear equation $^{14}_{7} N(\alpha\,,\,p) ^{17}_{8} O$ (4 Marks)
 - B- Draw diagram for stability of nucleus.

(4 Marks)

4- Give the reason for the following (Five only):

(15 Marks)

- a. Alpha particles effect on top layer on the skin
- b. Using magnetic field in the fusion reactor
- c. Enriching uranium
- d. Using moderator in the fission reactor
- e. ¹⁴C cannot used in dating of rock
- f. Radioisotopes are uses in medical

Good Luck

Examiners: Prof / Mohamed Gaber

Dr/ Nadia Elwakiel

Section (A); Bifunctional compounds:	[75 Marks]
Answer the following questions:	
1- With chemical equations, give one method to prepare each of the	e following compounds
[15 Marks]	
i- Isoprene ii- Propargyl alcohol iii- Crotonaldehyde	
	157
2- Mark $()$ or (X) for the following statements. With equations, congive briefly the reason if needed: [20 Marks]	rect the wrong one and
i- Free radical addition of simple alkenes goes faster that	n those of conjugated
dienes.	
ii- Methyl benzoate undergoes Claisen condensation.	()
iii- Reaction of HCN with methyl vinyl ketone gives cyanohydrir	ne. ()

3- With chemical equations, illustrate the mechanism of the following reactions and name the type of reaction as well as the final product: [20 Marks]

iv- Mesityl oxide is obtained by the aldol condensation of acetaldehyde.

- Propanal with allyl chloride and triphenylphosphine in the presence of phenyl
- Acetophenone with ethyl 2-bromopropionate in the presence of Zn followed by hydrolysis.
- 4- With chemical equations, explain the following conversions: [20 Marks]
 - j-Ethyl acetate into butanone.
 - ii-Diethyl malonate into 2,3-dimethylpentanoic acid.

Please, look at the back

Section (B); Alicyclic compounds:

[75 Marks]

Answer the following questions:

1- Name the following compounds according to the IUPAC nomenclature: [15 Marks]

- 2- with chemical equations, describe the following reactions: [20 Marks]
 - i- Benzoylcyclopropane with HBr.
 - ii- Ketene with diazomethane in the presence of H₂O.
 - iii- Cyclopentadiene with ethylmagnesium bromide followed by treatment with FeCl₃.
 - iv- Cyclohexene with perbenzoic acid followed by addition of NH₃.
- 3- With chemical equations, illustrate the following conversions: [24 Marks]
 - i- ferrocene to vinylferrocene.
 - ii- Acetone to aldimedone.
 - iii- Cyclopentanone to spiro[4.5]decan-6-one
- 4- With chemical equations, carry out the mechanism of the following reactions: [16 Marks]
 - i- Pinacol-pinacolone rearrangement of 1,2-dimethylcyclohexane-1,2-diol.
 - ii- Favorskii rearrangement of 2-chlorocyclohexanone.

Good Luck

Examiner: Prof. Dr. Nasser El-Brollosy